Меню

Теги для нашей библиотеки:

Рефераты бесплатно, доклады, курсовые работы, рефераты бесплатно, реферат, рефераты, рефераты скачать, Рефераты бесплатно, большая бибилиотека рефератов, и многое другое.


  Методика теплового расчета двигателя внутреннего сгорания

Методика теплового расчета двигателя внутреннего сгорания

Содержание


Введение

1. Исходные данные

2. Параметры рабочего тела

2.1 Расчет теоретически необходимого количества воздуха

2.2 Расчет количества свежего заряда

2.3 Расчет количества продуктов сгорания

2.4 Расчет объёмных долей компонентов продуктов сгорания

3. Расчет параметров наддува

4. Расчет процесса впуска

5. Расчёт процесса сжатия

6. Расчет процесса сгорания

7. Расчёт процесса расширения

8. Проверка расчета процесса впуска

9. Расчет показателей рабочего цикла

10. Определение основных размеров цилиндра

11. Расчёт и проектирование системы наддува

12. Построение индикаторной диаграммы

Выводы

Список литературы

Приложения



Реферат


Цель курсового проекта - ознакомиться с методикой теплового расчета двигателя внутреннего сгорания и выполнить расчет для прототипа двигателя марки MAN.

Тепловой расчёт двигателя включает:

1) Расчёт всех основных процессов цикла (впуска, сжатия, сгорания, расширения, выпуска) и определение параметров рабочего тела (объёма, давления) в характерных точках цикла (a, c, z’, z b, r). На основе этих расчётов строят индикаторную диаграмму в системе координат p-v.

2) Определение основных энергетических индикаторных показателей, среди которых:

Li - индикаторная работа цикла;

Pi - среднее индикаторное давление, а также экономических индикаторных показателей; среди них:

hi - индикаторный к. п. д.;

gi - удельный индикаторный расход топлива.

После оценки механического к. п. д. двигателя определяют также аналогичные эффективные показатели: (энергетический (Ре) и экономические (he, ge)).

3) Определение основных размеров цилиндра (диаметра D и хода поршня S), а также характерных объёмов:

рабочего объёма цилиндра Vh;

объёма камеры сжатия Vc;

полного объёма цилиндра Va;

литража двигателя .

Тепловой расчёт выполняют для нормального режима.

Наддув, степень сжатия, цилиндр, коэффициент избытка воздуха, рабочее тело, индикаторное давление.


Введение


В качестве источника механической энергии на современных автомобилях и тракторах применяют в основном двигатели внутреннего сгорания (ДСВ). В ДСВ химическая энергия топлива преобразуется сначала в тепловую в процессе сгорания, а затем теплота превращается в механическую энергию на валу двигателя. Вырабатываемая механическая энергия частично используется для обслуживания внутренних систем двигателя (охлаждения, смазки, питания), а также внешних систем автомобиля или трактора (электроснабжения; тормозных, если тормозные системы с гидро- или пневмоприводом и т.д.). Но основным потребителем механической энергии является движитель (приводные колёса или гусеницы), куда энергия подаётся с помощью трансмиссии.

Основные показатели автомобиля или трактора (скорость движения, максимальная грузоподъёмность, экономичность, экологические факторы и т.п.) определяются главным образом двигателем. Поэтому, представляется очень важным уметь прогнозировать показатели двигателя и его характеристики, чтобы удовлетворить требованиям транспортного средства.

На современных автомобилях и тракторных применяют главным образом четырёхтактные бензиновые и дизельные двигатели. Основным направлением их форсирования и улучшения показателей служат газотурбинный наддув и охлаждение надувочного воздуха. Поэтому, необходимо выполнять тепловой расчёт двигателей именно таких типов с ориентацией на лучшие результаты, достигнутые в практике мирового автотракторного двигателестроения.

Таким образом, тепловой расчёт двигателя является первой и необходимой ступенью в процессе проектирования и создания нового двигателя или в процессе совершенствования существующего.


1. Исходные данные


Исходные данные включают все необходимые для расчёта величины, а также важную информацию для обоснования выбора ряда констант и коэффициентов:

1 Тактность - четырёхтактный.

2 Вид топлива - бензин.

3 Мощность (эффективная) - Ne.

4 Частота вращения вала - n.

5 Степень сжатия - e.

6 Коэффициент избытка воздуха - a.

7 Давление наддува - Pk.

8Число цилиндров - i.

9 Отношение хода поршня к диаметру цилиндра - S/D.

Указанные величины в проектном расчёте предварительно оценивают, исходя из назначения двигателя, условий его работы, и пользуясь опытом отечественного и мирового автомобиле- и тракторостроения.

В средней климатической зоне, характерной для Украины, эти особенности можно не учитывать и расчёты вести при стандартных атмосферных условиях: Ро=0,101 МПа, То=293 К.

Для удобства исходные данные сводим в таблицу 1.1.


Таблица 1.1 - Исходные данные.

Ne, кВт

n, об/мин

e

a

Pk, Мпа

i

s/d

p0

T0

D, мм

169

2600

17

1,6

0,185

6

1,1

0,101

293

2

108,0


Прототип - MAN (Германия).


2. Параметры рабочего тела


Рабочее тело в цилиндре представляет собой в общем случае смесь воздуха, продуктов сгорания и паров топлива. Необходимо знать конкретный состав рабочего тела в каждом процессе, так как от этого зависят теплофизические свойства рабочего тела (теплоёмкости и показатель адиабаты).

 

2.1 Расчет теоретически необходимого количества воздуха


Теоретически необходимое количество воздуха определяют в расчёте на 1 кг топлива (жидкого):

массовое количество:


; (4.1)


мольное количество:


; (4.2)


где g02 и r02 - соответственно массовая и объёмная доли кислорода в атмосферном воздухе (для стандартной атмосферы доли кислорода стабильны и равны g02 =0,23, r02 =0,21);

C, H, O - элементарный состав топлива (массовые доли входящих в топливо химических элементов: углерода, водорода и кислорода см. таблицу 4.1).

Элементарный состав топлива определяют в зависимости от вида топлива. Основные данные о жидком топливе (дизельном топливе) приведены в таблице 4.1.


Таблица 4.1 - Данные о бензине

тип

С

Н

О



Hu

Дизельное топливо

0,870

0,126

-

190

42,5


Проводим расчет по формулам 4.1, 4.2:




2.2 Расчет количества свежего заряда


Свежий заряд - это смесь, поступающая в цилиндр в процессе впуска. Количество свежего заряда определяют также в расчете на 1кг топлива.

В дизельном двигателе свежий заряд состоит только из воздуха:

массовое количество заряда


 (4.3)


мольное количество заряда


 (4.4)


Проводим расчет по формулам 4.3, 4.4:



2.3 Расчет количества продуктов сгорания


Массовое количество продуктов сгорания для всех типов двигателей определяется одинаково и по закону сохранения массы (в расчете на 1кг топлива) равно:


 (4.5)


Мольное количество продуктов сгорания не равно мольному количеству исходных веществ, т.к. в процессе сгорания углеводородных топлив в воздухе изменяется количеством молекул.

Для стехиометрического состава смеси при полном сгорании:


 (4.6)


В дизельном двигателе, который работает на бедных смесях, коэффициент избытка воздуха больше единицы; поэтому после сгорания остается избыточный воздух:


 (4.7)


Важной характеристикой процесса сгорания является коэффициент молекулярного изменения, который равен отношению мольного количества продуктов сгорания к мольному количеству свежего заряда:


 (4.8)


Для углеводородных топлив, сгорающих в воздухе характерна величина β > 1, что указывает на изменение количества молей в сторону увеличения.


2.4 Расчет объёмных долей компонентов продуктов сгорания


Для удобства расчётов продукты сгорания условно делят на две части:

1. продукты сгорания стехиометрической смеси (при α = 1);

2. избыточный воздух.

В дизельном двигателе объемная доля продуктов сгорания:


 (4.9)


Объемная доля избыточного воздуха:


 (4.10)


В расчетах целесообразно воспользоваться проверочным соотношением: r0 + rb = 10,6394+0,360 =1


3. Расчет параметров наддува


Многие современные бензиновые двигатели и большинство дизельных снабжены системами газотурбинного наддува, что позволяет значительно повысить мощность при практически тех же габаритах и одновременно снизить удельный расход топлива. Компрессор, установленный в системе газотурбинного наддува, должен создавать большее давление, чем давление наддува Рк, так как часть его тратится не сопротивление воздушного тракта между компрессором и двигателем.

Основным элементом, создающим сопротивление, является охладитель наддувочного воздуха. Последний конструируют так, чтобы он существенно снижал температуру воздуха, но мало влиял на давление. На основании статистических данных потери давления в охладителе составляют:



Следовательно, давление за компрессором:


 (МПа) (5.1)


Степень повышения давления в компрессоре:


 (5.2)


где Р0 - атмосферное давление.

Пpи сжатии воздуха в компрессоре происходит повышение его температуры, которая определяется по формуле:


 (5.3)


гдеТ0 - температура атмосферного воздуха;

К = 1,40 - показатель адиабаты для воздуха;

ηкад = 0,68 - 0,76 - адиабатный к. п. д. компрессора.

Повышение температуры составит:


 (К)


Температура воздуха на входе в двигатель:


 (5.4)


где σ = 0,5 - 0,8 - степень тепловой эффективности охладителя.

Теоретически, если σ = 0, то , что означает отсутствие охлаждения.

Если σ = 1, то , что соответствует полному охлаждению воздуха до температуры окружающей среды. С термодинамической точки зрения величину σ целесообразно увеличивать, однако при этом растут габариты и масса охладителя. Практикой выработаны рекомендации для целесообразного выбора значения степени тепловой эффективности охладителя в диапазоне, указанном выше.

Температура воздуха на входе в двигатель составит:


 (К)



4. Расчет процесса впуска


Процесс впуска представляет собой сложный термодинамический процесс в открытой термодинамической системе, который сопровождается изменением объёма цилиндра, проходного сечения впускных клапанов, сопротивления на впуске. В этом процессе протекают все диссипативные явления, вызванные трением, теплообменом и диффузией. Точный расчёт процесса впуска возможен лишь на основе численного решения системы дифференциальных уравнений, что выходит за рамки настоящей курсовой работы.

В курсовой работе ограничимся определением параметров рабочего тела в конце процесса впуска, используя многочисленные экспериментальные данные, полученные при исследовании двигателей подобных типов.

За начало цикла примем, точку "r", которая соответствует концу процесса выпуска или началу впуска, а поршень находится в ВМТ. Количество рабочего тела в цилиндре в этом случае минимально, поэтому погрешности в оценке параметров рабочего тела сравнительно мало влияют на общий результат расчёта.

На основании статистических опытных данных принимаем параметры рабочего тела в точке "r" для бензиновых двигателей с наддувом:


 (МПа) ;


Давление в цилиндре в конце впуска отличается от давления наддува Рк в меньшую сторону за счёт потерь давления при впуске (главным образом в клапанных устройствах):


 (6.1)


где  = (0,05-0,15). Рк - потеря давления при впуске.

Давление в цилиндре в конце впуска составит:


 (МПа)


Температуру в цилиндре в конце впуска определяют по формуле, полученной на основе баланса энергии при впуске:


 (5.2)


где  - повышение температуры свежего заряда при впуске за счёт подогрева от стенок (для дизельных двигателей  = 20 - 40 К);

γ - коэффициент остаточных газов (для дизельных двигателей γ = 0-0,05);

Температуру в цилиндре в конце впуска определяем по формуле (5.2):


 (К)


Величины Тr и γ, принятые при расчете процесса впуска, в дальнейшем могут быть проверены и при необходимости уточнены.

Важнейшей характеристикой процесса впуска является коэффициент наполнения ηv, который равен отношению количества свежего заряда, действительно поступившего в цилиндр, к теоретическому количеству свежего заряда, который помещается в рабочем объеме цилиндра при параметрах на впуске (Pk,Tk).

Для расчета коэффициента наполнения служит формула:


 (5.3)


Коэффициент наполнения влияет на количество свежего заряда в цилиндре и, следовательно на мощность. Поэтому всемерно стремятся к увеличению коэффициента наполнения, снижая потери при впуске () и осуществляя продувку камеры сгорания в период газообмена.


5. Расчёт процесса сжатия


В процессе сжатия происходит уменьшение объема, поэтому давление и температура тела в цилиндре возрастают. На процесс сжатия сильное влияние оказывает теплообмен со стенками, а также трение и диффузия при движении и перемешивании рабочего тела. Теплообмен со стенками приводит к подводу теплоты к рабочему телу, когда его температура низка. В конце процесса сжатия температура рабочего тела превосходит температуру стенок и направление теплового потока меняется - он направлен от рабочего тела к стенкам, то есть происходит теплоотвод. Поэтому процесс сжатия является сложно-политропным с переменным показателем политропного процесса.

Страницы: 1, 2


Рекомендуем

Опрос

Какой формат работ для вас удобней?

doc
pdf
djvu
fb2
chm
txt
другой


Результаты опроса
Все опросы